If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-400-14700=0
We add all the numbers together, and all the variables
x^2-15100=0
a = 1; b = 0; c = -15100;
Δ = b2-4ac
Δ = 02-4·1·(-15100)
Δ = 60400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60400}=\sqrt{400*151}=\sqrt{400}*\sqrt{151}=20\sqrt{151}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{151}}{2*1}=\frac{0-20\sqrt{151}}{2} =-\frac{20\sqrt{151}}{2} =-10\sqrt{151} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{151}}{2*1}=\frac{0+20\sqrt{151}}{2} =\frac{20\sqrt{151}}{2} =10\sqrt{151} $
| n+8=-17 | | 2x+22=4x(+3) | | 2(a-4)=2a-8+4a | | |7x+3|=4 | | p+11=10 | | 11z5=9z+7 | | 2x+22=4x-30) | | 2(a-8)=2a-8+4a | | 75+(x+20)=180 | | 14x-9=123 | | 2x+47=5x-4 | | 2x+9(x–1)=8(2x+2)–5 | | 2x+50=5X-4 | | 7((p+1)=9-p | | 7=(-18+3x) | | 5x=3x–6 | | Y-6=6(x+4) | | |4x+20|=8 | | x/9+6=14 | | 16y+22=80 | | 5p=3p–6 | | 13.3+y/7=4.2 | | 155=10(x-65)+75 | | X2+2x+9=0 | | −14p+9=−75 | | 36=4(x-5 | | (x–13)³=8 | | u/5-2.2=-14.7 | | 6-2.1=w | | i+3.15=12.65 | | 15=4r+3 | | 25x+35=15x+125 |